Enhancing the production of recombinant human TGF-β1 through an understanding of TGF-β1 synthesis, signaling, and endocytosis in CHO cells

通过了解 CHO 细胞中的 TGF-β1 合成、信号传导和内吞作用来增强重组人 TGF-β1 的产生

阅读:6
作者:Kyungsoo Kim, Young Sik Kim, Ju Woong Jang, Gyun Min Lee

Abstract

To enhance the production of recombinant human transforming growth factor-beta1 (rhTGF-β1) in Chinese hamster ovary (CHO) cells, rhTGF-β1 was first characterized for endocytosis, signaling pathway, and overall maturation process. The mature rhTGF-β1 used for clinical application was internalized into CHO cells and inhibited the growth of CHO cells in a dose-dependent manner. However, mature rhTGF-β1 was mostly produced in the form of latent rhTGF-β1 in cultures of recombinant CHO (rCHO) cells producing rhTGF-β1 (CHO-rhTGF-β1). The concentration of active mature rhTGF-β1 in the culture supernatant of CHO-rhTGF-β1 cells was not high enough to compromise yield. In addition, a significant amount of unprocessed precursors was produced by CHO-rhTGF-β1 cells. Overexpression of PACEsol, a soluble form of furin, in CHO-rhTGF-β1 cells was effective for the proteolytic cleavage of unprocessed precursors. The highest mature rhTGF-β1 concentration (6.4 μg mL-1 ) was obtained with the PACEsol-expressing clone, which was approximately 45% higher than that of the parental clone (P < 0.01). Thus, a comprehensive understanding of the intrinsic properties of rhTGF-β1 with respect to the overall maturation process, signaling pathway, and endocytosis is essential for effectively enhancing the production of mature rhTGF-β1 in CHO cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。