Disease-associated mutations in WDR34 lead to diverse impacts on the assembly and function of dynein-2

WDR34 中的疾病相关突变对动力蛋白-2 的组装和功能产生不同的影响

阅读:5
作者:Caroline Shak, Laura Vuolo, Borhan Uddin, Yohei Katoh, Tom Brown, Aakash G Mukhopadhyay, Kate Heesom, Anthony J Roberts, Nicola Stevenson, Kazuhisa Nakayama, David J Stephens

Abstract

The primary cilium is a sensory organelle, receiving signals from the external environment and relaying them into the cell. Mutations in proteins required for transport in the primary cilium result in ciliopathies, a group of genetic disorders that commonly lead to the malformation of organs such as the kidney, liver and eyes and skeletal dysplasias. The motor proteins dynein-2 and kinesin-2 mediate retrograde and anterograde transport, respectively, in the cilium. WDR34 (also known as DYNC2I2), a dynein-2 intermediate chain, is required for the maintenance of cilia function. Here, we investigated WDR34 mutations identified in Jeune syndrome, short-rib polydactyly syndrome and asphyxiating thoracic dysplasia patients. There is a poor correlation between genotype and phenotype in these cases, making diagnosis and treatment highly complex. We set out to define the biological impacts on cilia formation and function of WDR34 mutations by stably expressing the mutant proteins in WDR34-knockout cells. WDR34 mutations led to different spectrums of phenotypes. Quantitative proteomics demonstrated changes in dynein-2 assembly, whereas initiation and extension of the axoneme, localization of intraflagellar transport complex-B proteins, transition zone integrity and Hedgehog signalling were also affected.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。