Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of MEPE

机械负荷骨细胞对破骨细胞生成的抑制:MEPE 的参与

阅读:5
作者:Rishikesh N Kulkarni, Astrid D Bakker, Vincent Everts, Jenneke Klein-Nulend

Abstract

In regions of high bone loading, the mechanoresponsive osteocytes inhibit osteoclastic bone resorption by producing signaling molecules. One possible candidate is matrix extracellular phosphoglycoprotein (MEPE) because acidic serine- and aspartate-rich MEPE-associated motif peptides upregulate osteoprotegerin (OPG) gene expression, a negative regulator of osteoclastogenesis. These peptides are cleaved from MEPE when relatively more MEPE than PHEX (phosphate-regulating gene with homology to endopeptidases on the X chromosome) is present. We investigated whether mechanical loading of osteocytes affects osteocyte-stimulated osteoclastogenesis by involvement of MEPE. MLO-Y4 osteocytes were mechanically loaded by 1-h pulsating fluid flow (PFF; 0.7 ± 0.3 Pa, 5 Hz) or kept under static control conditions. Recombinant MEPE (0.05, 0.5, or 5 μg/ml) was added to some static cultures. Mouse bone marrow cells were seeded on top of the osteocytes to determine osteoclastogenesis. Gene expression of MEPE, PHEX, receptor activator of nuclear factor kappa-B ligand (RANKL), and OPG by osteocytes was determined after PFF. Osteocytes supported osteoclast formation under static control conditions. Both PFF and recombinant MEPE inhibited osteocyte-stimulated osteoclastogenesis. PFF upregulated MEPE gene expression by 2.5-fold, but not PHEX expression. PFF decreased the RANKL/OPG ratio at 1-h PFF treatment. Our data suggest that mechanical loading induces changes in gene expression by osteocytes, which likely contributes to the inhibition of osteoclastogenesis after mechanical loading of bone. Because mechanical loading upregulated gene expression of MEPE but not PHEX, possibly resulting in the upregulation of OPG gene expression, we speculate that MEPE is a soluble factor involved in the inhibition of osteoclastogenesis by osteocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。