Benzyl Furanones and Pyrones from the Marine-Derived Fungus Aspergillus terreus Induced by Chemical Epigenetic Modification

通过化学表观遗传修饰诱导海洋真菌土曲霉中的苄基呋喃酮和吡喃酮

阅读:4
作者:Jing-Shuai Wu, Xiao-Hui Shi, Ya-Hui Zhang, Chang-Lun Shao, Xiu-Mei Fu, Xin Li, Guang-Shan Yao, Chang-Yun Wang

Abstract

Chemical epigenetic modification on a marine-derived fungus Aspergillus terreus RA2905 using a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), resulted in a significantly changed metabolic profile. A chemical investigation of its ethyl acetate (EtOAc) extract led to the isolation of a racemate of benzyl furanone racemate (±)-1, which further separated chirally as a pair of new enantiomers, (+)- and (-)-asperfuranone (1), together with two new benzyl pyrones, asperpyranones A (2) and B (3). Their structures were elucidated by analysis of the comprehensive spectroscopic data, including one-dimensional (1D) and two-dimensional (2D) NMR, and HRESIMS. The absolute configurations were determined by electronic circular dichroism (ECD) calculation and single-crystal X-ray crystallographic experiment. The structures with benzyl furanone or benzyl pyrone skeletons were discovered from natural products for the first time. Compounds (±)-1, (+)-1, (-)-1, and 2 displayed the antifungal activities against Candida albicans with MIC values of 32, 16, 64, and 64 μg/mL and PTP1B inhibitory activities with the IC50 values of 45.79, 17.32, 35.50, and 42.32 μM, respectively. Compound 2 exhibited antibacterial activity against Pseudomonas aeruginosa with the MIC value of 32 μg/mL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。