Discovery of Unannotated Small Open Reading Frames in Streptococcus pneumoniae D39 Involved in Quorum Sensing and Virulence Using Ribosome Profiling

利用核糖体分析发现肺炎链球菌 D39 中参与群体感应和毒力的未注释小型开放阅读框架

阅读:6
作者:Irina Laczkovich, Kyle Mangano, Xinhao Shao, Adam J Hockenberry, Yu Gao, Alexander Mankin, Nora Vázquez-Laslop, Michael J Federle

Abstract

Streptococcus pneumoniae, an opportunistic human pathogen, is the leading cause of community-acquired pneumonia and an agent of otitis media, septicemia, and meningitis. Although genomic and transcriptomic studies of S. pneumoniae have provided detailed perspectives on gene content and expression programs, they have lacked information pertaining to the translational landscape, particularly at a resolution that identifies commonly overlooked small open reading frames (sORFs), whose importance is increasingly realized in metabolism, regulation, and virulence. To identify protein-coding sORFs in S. pneumoniae, antibiotic-enhanced ribosome profiling was conducted. Using translation inhibitors, 114 novel sORFs were detected, and the expression of a subset of them was experimentally validated. Two loci associated with virulence and quorum sensing were examined in deeper detail. One such sORF, rio3, overlaps with the noncoding RNA srf-02 that was previously implicated in pathogenesis. Targeted mutagenesis parsing rio3 from srf-02 revealed that rio3 is responsible for the fitness defect seen in a murine nasopharyngeal colonization model. Additionally, two novel sORFs located adjacent to the quorum sensing receptor rgg1518 were found to impact regulatory activity. Our findings emphasize the importance of sORFs present in the genomes of pathogenic bacteria and underscore the utility of ribosome profiling for identifying the bacterial translatome. IMPORTANCE This work employed pleuromutilin-assisted ribosome profiling using retapamulin (Ribo-RET) to identify genome-wide translation start sites in the human pathogen Streptococcus pneumoniae. We identified 114 unannotated intergenic small open reading frames (sORFs). The described procedures and data sets provide a model for microbiologists seeking to explore the translational landscape of bacteria. The biological roles of four sORF examples are characterized: two control the regulation of a cell-cell communication (quorum sensing) system, one contributes to the ability of S. pneumoniae to colonize the upper respiratory tract of mice, and a fourth governs the translation of PrfB, a protein enabling ribosome release at stop codons. We propose that Ribo-RET is a valuable approach to identifying unstudied microproteins and difficult-to-find pheromone genes used by Gram-positive organisms, whose genomes are replete with pheromone receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。