Metabolic and tissue-specific regulation of acyl-CoA metabolism

酰基辅酶 A 代谢的代谢和组织特异性调节

阅读:7
作者:Jessica M Ellis, Caitlyn E Bowman, Michael J Wolfgang

Abstract

Acyl-CoA formation initiates cellular fatty acid metabolism. Acyl-CoAs are generated by the ligation of a fatty acid to Coenzyme A mediated by a large family of acyl-CoA synthetases (ACS). Conversely, acyl-CoAs can be hydrolyzed by a family of acyl-CoA thioesterases (ACOT). Here, we have determined the transcriptional regulation of all ACS and ACOT enzymes across tissues and in response to metabolic perturbations. We find patterns of coordinated regulation within and between these gene families as well as distinct regulation occurring in a tissue- and physiologically-dependent manner. Due to observed changes in long-chain ACOT mRNA and protein abundance in liver and adipose tissue, we determined the consequence of increasing cytosolic long-chain thioesterase activity on fatty acid metabolism in these tissues by generating transgenic mice overexpressing a hyperactive mutant of Acot7 in the liver or adipose tissue. Doubling cytosolic acyl-CoA thioesterase activity failed to protect mice from diet-induced obesity, fatty liver or insulin resistance, however, overexpression of Acot7 in adipocytes rendered mice cold intolerant. Together, these data suggest distinct modes of regulation of the ACS and ACOT enzymes and that these enzymes act in a coordinated fashion to control fatty acid metabolism in a tissue-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。