High spatial resolution (10-50 μm) analysis of Sr isotopes in rock-forming apatite by LA-MC-ICP-MS

通过 LA-MC-ICP-MS 对岩石形成磷灰石中的 Sr 同位素进行高空间分辨率(10-50 μm)分析

阅读:6
作者:Anda Buzenchi, Hugo Moreira, Olivier Bruguier, Delphine Bosch, Bruno Dhuime

Abstract

In situ Sr isotopes analysis of apatite by LA-(MC)-ICP-MS is challenged by the difficulty to monitor and correct isobaric interferences from atomic and polyatomic ions. We present a new routine procedure for analysing rock-forming apatites with a Thermo Scientific Neptune XT MC-ICP-MS coupled with a Teledyne Cetac Analyte Excite+ 193 nm laser ablation system. Five apatite standards that cover a large range of REE/Sr ratios were selected, and their 87Sr/86Sr ratios were measured in solution after dissolution and purification of Sr [Durango: 0.706321(5); Madagascar: 0.711814(5); Slyudyanka; 0.707705(4); Sumé: 0.707247(4); and Ipirá: 0.710487(4)]. The optimisation of both instrument setup and data reduction schemes was achieved through repeated measurements of calibration solutions and of apatite standards at four different rectangular-shaped laser ablation beam sizes (50 × 50, 25 × 25, 13 × 13 and 10 × 10 μm). Two complementary methods were developed for data reduction: Method 1, which corrects measured intensities for gas blank and instrumental mass bias only; and Method 2, which additionally corrects for isobaric interferences of 87Rb+, 166, 168 and 170Er++, 170, 172, 174 and 176Yb++, 40Ca44Ca+, 40Ca46Ca+, 44Ca43Ca+ and 40Ca48Ca+. A precision of ca. 100 ppm (2 s.e.) can be achieved on the 87Sr/86Sr ratio with a 50 μm laser ablation beam when using Method 2, and it remains better than 3000 ppm at 10 μm with Method 1. Method 1 gives precise and accurate 87Sr/86Sr ratios when 173Yb++ is below the global limit of detection (with LODglobal = 3 s.d. of the means of all gas blanks measurements). When 173Yb++ is above the LODglobal, Method 2 should be preferred as it provides more accurate 87Sr/86Sr ratios. Overall, this study offers a robust and reliable approach for LA-MC-ICP-MS analysis of Sr isotopes in rock-forming apatite at a high spatial resolution (i.e. down to 10 μm), overcoming previous limitations associated with instrumental set up and data reduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。