Cyclic Adenosine 3',5'-Monophosphate Elevation and Biological Signaling through a Secretin Family Gs-Coupled G Protein-Coupled Receptor Are Restricted to a Single Adenylate Cyclase Isoform

环腺苷 3',5'-单磷酸升高和通过促胰液素家族 Gs 偶联 G 蛋白偶联受体的生物信号传导仅限于单个腺苷酸环化酶同工酶

阅读:5
作者:Andrew C Emery, Xiu-Huai Liu, Wenqin Xu, Maribeth V Eiden, Lee E Eiden

Abstract

PC12 cells express five adenylate cyclase (AC) isoforms, most abundantly AC6 and AC7. These two ACs were individually silenced using lentiviral short hairpin RNAs, which lead to a decrease (≥80%) of the protein product of each transcript. These stable PC12 sublines were then used to examine potential AC isoform preference for signaling through a family B G protein-coupled receptor (GPCR). Cells were challenged with the endogenous agonist of the pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1), pituitary adenylate cyclase-activating polypeptide (PACAP)-38, or the diterpene forskolin as an AC-proximal control. Intracellular cAMP levels were elevated by forskolin about equally in wild-type, AC6, and AC7 knockdown cells. The ability of PACAP-38 and forskolin to activate three cAMP sensors downstream of AC [protein kinase A (PKA), exchange protein activated by cAMP (Epac) 2/Rapgef4, and neuritogenic cAMP sensor (NCS)/Rapgef2] was examined by monitoring the phosphorylation status of their respective targets, cAMP response element-binding protein, p38, and extracellular signal-regulated kinase. Forskolin stimulation of each downstream target of cAMP was unaffected by knockdown of either AC6 or AC7. PACAP-38 activation of all downstream targets of cAMP was unaffected by AC7 knockdown, but abolished following AC6 knockdown. Membrane cholesterol depletion with methyl-β-cyclodextrin mimicked the effects of AC6 silencing on PACAP signaling, without attenuating forskolin signaling. These data suggest that vicinal constraint of the GPCR PAC1 and AC6 determines the exclusive requirement for this AC in PACAP signaling, but that the coupling of the cAMP sensors PKA, Epac2/Rapgef4, and NCS/Rapgef2, to their respective downstream signaling targets, determines how cAMP signaling is parcellated to physiologic responses, such as neuritogenesis, upon GPCR-Gs activation in neuroendocrine cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。