Cell signaling by urokinase-type plasminogen activator receptor induces stem cell-like properties in breast cancer cells

尿激酶型纤溶酶原激活剂受体的细胞信号传导诱导乳腺癌细胞产生类似干细胞的特性

阅读:7
作者:Minji Jo, Boryana M Eastman, Drue L Webb, Konstantin Stoletov, Richard Klemke, Steven L Gonias

Abstract

Signaling by urokinase-type plasminogen activator receptor (uPAR) can cause epithelial-mesenchymal transition (EMT) in cultured breast cancer cells. In this report, we show that uPAR signaling can also induce cancer stem cell (CSC)-like properties. Ectopic overexpression of uPAR in human MDA-MB-468 breast cancer cells promoted the emergence of a CD24(-)/CD44(+) phenotype, characteristic of CSCs, while increasing the cell surface abundance of integrin subunits β1/CD29 and α6/CD49f that represent putative mammary gland stem cell biomarkers. uPAR overexpression increased mammosphere formation in vitro and tumor formation in an immunocompromized severe combined immunodeficient (SCID) mouse model of orthotopic breast cancer. Hypoxic conditions that are known to induce EMT in MDA-MB-468 cells also increased cell surface β1/CD29, mimicking the effects of uPAR overexpression. Antagonizing uPAR effector signaling pathways reversed the increase in cell surface integrin expression. Whereas uPAR overexpression did not induce EMT in MCF-7 breast cancer cells, CSC-like properties were nevertheless still induced along with an increase in tumor initiation and growth in the orthotopic setting in SCID mice. Notably, in MCF-7 cell mammospheres, which display a well-defined acinus-like structure with polarized expression of E-cadherin and β1-integrin, cell collapse into the central cavity was decreased by uPAR overexpression, suggesting that uPAR signaling may stabilize epithelial morphology. In summary, our findings show that uPAR signaling can induce CSC-like properties in breast cancer cells, either concomitantly with or separately from EMT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。