Bio-evaluation of the role of chitosan and curcumin nanoparticles in ameliorating genotoxicity and inflammatory responses in rats' gastric tissue followed hydroxyapatite nanoparticles' oral uptake

壳聚糖和姜黄素纳米粒子在改善大鼠口服羟基磷灰石纳米粒子后胃组织遗传毒性和炎症反应中的作用的生物评估

阅读:5
作者:Israa F Mosa, Haitham H Abd, Abdelsalam Abuzreda, Nadhom Assaf, Amenh B Yousif

Abstract

Hydroxyapatite has been extensively used in tissue engineering due to its osteogenic potency, but its present toxicological facts are relatively insufficient. Here, the possible gastric toxicity of hydroxyapatite nanoparticles was evaluated biochemically to determine oxidant and antioxidant parameters in rats' stomach tissues. At results, hydroxyapatite nanoparticles have declined stomach antioxidant enzymes and reduced glutathione level, while an induction in lipid peroxidation and nitric oxide has been observed. Furthermore, DNA oxidation was analyzed by the suppression of toll-like receptors 2, nuclear factor-kappa B and Forkhead box P3 gene expression and also 8-Oxo-2'-deoxyguanosine level as a genotoxicity indicator. Various pro-inflammatory gene products have been identified that intercede a vital role in proliferation and apoptosis suppression, among these products: tumor suppressor p53, tumor necrosis factor-α and interliukin-6. Moreover, the hydroxyapatite-treated group revealed wide histological alterations and significant elevation in the number of proliferating cell nuclear antigen-positive cells, which has been observed in the mucosal layer of the small intestine, and these alterations are an indication of small intestine injury, while the appearance of chitosan and curcumin nanoparticles in the combination group showed improvement in all the above parameters with inhibition of toxic-oxidant parameters and activation of antioxidant parameters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。