Base-modified thymidines capable of terminating DNA synthesis are novel bioactive compounds with activity in cancer cells

能够终止 DNA 合成的碱基修饰胸苷是一种在癌细胞中具有活性的新型生物活性化合物

阅读:8
作者:Kayla M Borland, Safnas F AbdulSalam, Morwena J Solivio, Matthew P Burke, Patrick R Wolfkiel, Sean M Lawson, Courtney A Stockman, Joel M Andersen, Skyler Smith, Julia N Tolstolutskaya, Purujit N Gurjar, Aron P Bercz, Edward J Merino, Vladislav A Litosh

Abstract

Current FDA-approved chemotherapeutic antimetabolites elicit severe side effects that warrant their improvement; therefore, we designed compounds with mechanisms of action focusing on inhibiting DNA replication rather than targeting multiple pathways. We previously discovered that 5-(α-substituted-2-nitrobenzyloxy)methyluridine-5'-triphosphates were exquisite DNA synthesis terminators; therefore, we synthesized a library of 35 thymidine analogs and evaluated their activity using an MTT cell viability assay of MCF7 breast cancer cells chosen for their vulnerability to these nucleoside derivatives. Compound 3a, having an α-tert-butyl-2-nitro-4-(phenyl)alkynylbenzyloxy group, showed an IC50 of 9±1μM. The compound is more selective for cancer cells than for fibroblast cells compared with 5-fluorouracil. Treatment of MCF7 cells with 3a elicits the DNA damage response as indicated by phosphorylation of γ-H2A. A primer extension assay of the 5'-triphosphate of 3a revealed that 3aTP is more likely to inhibit DNA polymerase than to lead to termination events upon incorporation into the DNA replication fork.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。