Interactions between exposure to environmental polycyclic aromatic hydrocarbons and DNA repair gene polymorphisms on bulky DNA adducts in human sperm

环境多环芳烃暴露与人类精子中大分子 DNA 加合物 DNA 修复基因多态性之间的相互作用

阅读:5
作者:Guixiang Ji, Aihua Gu, Yong Zhou, Xiangguo Shi, Yankai Xia, Yan Long, Ling Song, Shoulin Wang, Xinru Wang

Background

Nucleotide excision repair (NER) and base excision repair (BER) are the primary mechanisms for repair of bulky adducts caused by chemical agents, such as PAHs. It is expected that polymorphisms in NER or BER genes may modulate individual susceptibility to PAHs exposure. Here, we evaluate the effects of PAHs exposure and polymorphisms in NER and BER pathway, alone or combined, on polycyclic aromatic hydrocarbon-DNA (PAH-DNA) adducts in human sperm. Methodology/principal findings: Sperm PAH-DNA adducts were measured by immunofluorescent assay using flow cytometry in a sample of 465 infertile adults. Polymorphisms of XPA, XPD, ERCC1, XPF, and XRCC1 were determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) techniques. The PAHs exposure was detected as urinary 1-hydroxypyrene (1-OHP) levels. In multivariate models adjusted for potential confounders, we observed that XRCC1 5'pUTR -T/C, Arg194Trp, Arg399Gln polymorphisms were associated with increased sperm adduct levels. Furthermore, the stratified analysis indicated that adverse effects of XRCC1 Arg194Trp, Arg399Gln polymorphisms on PAH-DNA adducts were detected only in the high PAHs exposure group. Conclusions/significance: These findings provided the first evidence that polymorphisms of XRCC1 may modify sperm PAH-DNA adduct levels and may be useful biomarkers to identify individuals susceptible to DNA damage resulting from PAHs exposure.

Significance

These findings provided the first evidence that polymorphisms of XRCC1 may modify sperm PAH-DNA adduct levels and may be useful biomarkers to identify individuals susceptible to DNA damage resulting from PAHs exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。