Retinal Cone Mosaic in sws1-Mutant Medaka (Oryzias latipes), A Teleost

sws1 突变体青鳉 (Oryzias latipes) 的视网膜锥体马赛克

阅读:5
作者:Megumi Matsuo, Makoto Matsuyama, Tomoe Kobayashi, Shinji Kanda, Satoshi Ansai, Taichi Kawakami, Erika Hosokawa, Yutaka Daido, Takehiro G Kusakabe, Kiyoshi Naruse, Shoji Fukamachi

Conclusions

Comparative observation of sws1-mutant and wild-type retinas revealed that ZPR1 negativity is not a marker for SSCs with SWS1, but SSCs themselves. Loss of functional sws1 did not cause retinal degeneration, indicating that sws1 is not essential for cone mosaic development in medaka. Our two fish lines, one with visualized SWS1 and the other lacking functional SWS1, offer an opportunity to study neural network synapsing with SSCs and to clarify the role of SWS1 in vision.

Methods

To visualize SWS1, a monoclonal anti-SWS1 antibody and transgenic reporter fish (Tg(sws1:mem-egfp)) were generated. We also developed a CRISPR/Cas-driven sws1-mutant line. Retinal structure of sws1 mutant was visualized using anti-SWS1, 1D4, and ZPR1 antibodies and coumarin derivatives and compared with wild type, Tg(sws1:mem-egfp), and another opsin (lws) mutant.

Purpose

Ablation of short single cones (SSCs) expressing short-wavelength-sensitive opsin (SWS1) is well analyzed in the field of regenerative retinal cells. In contrast with ablation studies, the phenomena caused by the complete deletion of SWS1 are less well-understood. To assess the effects of SWS1 deficiency on retinal structure, we established and analyzed sws1-mutant medaka.

Results

Our rat monoclonal antibody specifically recognized medaka SWS1. Sws1 mutant retained regularly arranged cone mosaic as lws mutant and its SSCs had neither SWS1 nor long wavelength sensitive opsin. Depletion of sws1 did not affect the expression of long wavelength sensitive opsin, and vice versa. ZPR1 antibody recognized arrestin spread throughout double cones and long single cones in wild-type, transgenic, and sws1-mutant lines. Conclusions: Comparative observation of sws1-mutant and wild-type retinas revealed that ZPR1 negativity is not a marker for SSCs with SWS1, but SSCs themselves. Loss of functional sws1 did not cause retinal degeneration, indicating that sws1 is not essential for cone mosaic development in medaka. Our two fish lines, one with visualized SWS1 and the other lacking functional SWS1, offer an opportunity to study neural network synapsing with SSCs and to clarify the role of SWS1 in vision.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。