Epidermal growth factor activates a hypoxia-inducible factor 1α-microRNA-21 axis to inhibit aquaporin 4 in chronic rhinosinusitis

表皮生长因子激活缺氧诱导因子 1α-microRNA-21 轴以抑制慢性鼻窦炎中的水通道蛋白 4

阅读:4
作者:Junjun Chen, Dong Liu, Jingpu Yang, Chengxun Jin, Chang Zhao, Jinzhang Cheng

Abstract

The pathogenesis of chronic rhinosinusitis (CRS) is largely unknown, but accumulating evidence supports the role of the airway epithelium in its pathophysiology. In our study here, we evaluated whether epidermal growth factor (EGF) regulates a hypoxia-inducible factor 1α (HIF-1α)-microRNA-21 (miR-21)-aquaporin 4 (AQP4) axis in nasal epithelial cells from CRS patients. We found that, compared with normal sinus mucosa, EGF, HIF-1α, and miR-21 were upregulated and AQP4 was downregulated in sinus mucosa from patients with CRS and in a CRS mouse model. It was established that EGF upregulated HIF-1α and miR-21 expression, that HIF-1α regulated miR-21 transcription, and that the AQP4 gene was a target of miR-21. Knockdown of EGF and HIF-1α mRNAs and of miR-21, or overexpression of AQP4 mRNA, inhibited proliferation and promoted apoptosis of hypoxia-exposed human nasal epithelial cells, effects that were associated with reduced levels of α-SMA, fibronectin, and vimentin, as well as promoted caspase-3 activity and E-cadherin levels. In the mouse CRS model, EGF elevation increased in vivo production of inflammatory IL-4 and IFN-γ to promote CRS, which was reversed by AQP4 elevation. Collectively, EGF upregulates HIF-1α and miR-21 expression to inhibit AQP4 expression, thereby promoting the proliferation of nasal epithelial cells and the development of CRS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。