Diosmin Promotes Myogenesis via Activating the Akt/FOXO1 Pathway to Facilitate the Proliferation of C2C12 Myoblasts

地奥司明通过激活 Akt/FOXO1 通路促进 C2C12 成肌细胞增殖,从而促进肌肉生成

阅读:8
作者:Dingding Zhang, Xuan Zhang, Zhaojun Liu, Xiangfei Ma, Hongmin Li, Ming Shen, Jie Chen, Honglin Liu

Abstract

Our previous study with artificial intelligence (AI)-assisted screening found that diosmin, a natural flavonoid extracted from citrus, may affect myoblast proliferation and differentiation. At present, few studies have been conducted regarding the biological function of diosmin in muscle cells. Here, using molecular biological techniques, we found that diosmin elevated the proliferation ability of C2C12 myoblasts via activating the Akt/FOXO1 pathway to promote FOXO1 nuclear export, thus repressing p27 protein expression, increasing CDK2, CDK4, and cyclin D1 and cyclin E1 protein expression and accelerating cell cycle transformation, which contributed to myogenesis. Moreover, diosmin suppressed differentiation of C2C12 myoblasts by delaying the terminal exit of the cell cycle in early differentiated myoblasts and inhibiting autophagic flux in mature myotubes. Furthermore, diosmin promoted myogenesis by activating the Akt/FOXO1 pathway to facilitate myoblast proliferation, which had a positive biological effect on the repair of muscle injury. This study revealed the effect and mechanism of diosmin on skeletal muscle cells and simultaneously provided a new candidate drug for the treatment of myopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。