Tetrahydrobiopterin (BH4) Supplementation Prevents the Cardiorenal Effects of Diabetes in Mice by Reducing Oxidative Stress, Inflammation and Fibrosis

四氢生物蝶呤 (BH4) 补充剂可通过减少氧化应激、炎症和纤维化来预防糖尿病对小鼠的心肾影响

阅读:4
作者:Ulises Novoa, Karen Soto, Cristian Valdés, Jorge Villaseñor, Adriana V Treuer, Daniel R González

Background

The effects of diabetes on the cardiovascular system as well as in the kidney are profound, which include hypertrophy and fibrosis. Diabetes also induces oxidative stress, at least in part due to the uncoupling of nitric oxide synthase (NOS); this is a shift in NO production toward superoxide production due to reduced levels of the NOS cofactor tetrahydrobiopterin (BH4). With this in mind, we tested the hypothesis that BH4 supplementation may prevent the development of diabetic cardiomyopathy and nephropathy.

Conclusions

These results suggest that chronic treatment with BH4 in mice ameliorates the cardiorenal effects of diabetes,, probably by restoring the nitroso−redox balance. This offers a possible new alternative to explore a BH4-based treatment for the organ damage caused by diabetes.

Methods

Diabetes was induced in Balb/c mice with streptozotocin. Then, diabetic mice were divided into two groups: one group provided with BH4 (sapropterin) in drinking water (daily doses of 15 mg/kg/day, during eight weeks) and the other that received only water. A third group of normoglycemic mice that received only water were used as the control.

Results

Cardiac levels of BH4 were increased in mice treated with BH4 (p = 0.0019). Diabetes induced cardiac hypertrophy, which was prevented in the group that received BH4 (p < 0.05). In addition, hypertrophy was evaluated as cardiomyocyte cross-sectional area. This was reduced in diabetic mice that received BH4 (p = 0.0012). Diabetes induced cardiac interstitial fibrosis that was reduced in mice that received BH4 treatment (p < 0.05). We also evaluated in the kidney the impact of BH4 treatment on glomerular morphology. Diabetes induced glomerular hypertrophy compared with normoglycemic mice and was prevented by BH4 treatment. In addition, diabetic mice presented glomerular fibrosis, which was prevented in mice that received BH4. Conclusions: These results suggest that chronic treatment with BH4 in mice ameliorates the cardiorenal effects of diabetes,, probably by restoring the nitroso−redox balance. This offers a possible new alternative to explore a BH4-based treatment for the organ damage caused by diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。