Ketamine, but not guanosine, as a prophylactic agent against corticosterone-induced depressive-like behavior: Possible role of long-lasting pro-synaptogenic signaling pathway

氯胺酮而非鸟苷可作为预防皮质酮诱发的抑郁样行为的药物:长效促突触生成信号通路的可能作用

阅读:6
作者:Anderson Camargo, Ana Paula Dalmagro, Márcia M de Souza, Ana Lúcia B Zeni, Ana Lúcia S Rodrigues

Abstract

Ketamine has been reported to exert a prophylactic effect against stress-induced depressive-like behavior by modulating the guanosine-based purinergic system. However, the molecular pathways underlying its prophylactic effect and whether guanosine also elicits a similar effect remain to be determined. Here, we investigated the prophylactic effect of ketamine and guanosine against corticosterone (CORT - 20 mg/kg, p.o.)-induced depressive-like behavior in mice. Furthermore, we characterized if the prophylactic response may be associated with mTORC1-driven signaling in the hippocampus and prefrontal cortex. A single administration of ketamine (5 mg/kg, i.p.), but not guanosine (1 or 5 mg/kg, p.o.), given 1 week before the pharmacological stress prevented CORT-induced depressive-like behavior in the tail suspension test (TST) and splash test (SPT). Fluoxetine treatment for 3 weeks did not prevent CORT-induced behavioral effects. A single administration of subthreshold doses of ketamine (1 mg/kg, i.p.) plus guanosine (5 mg/kg, p.o.) partially prevented the CORT-induced depressive-like behavior in the SPT. Additionally, CORT reduced Akt (Ser473) and GSK-3β (Ser9) phosphorylation and PSD-95, GluA1, and synapsin immunocontent in the hippocampus, but not in the prefrontal cortex. No alterations on mTORC1/p70S6K immunocontent were found in both regions in any experimental group. CORT-induced reductions on PSD-95, GluA1, and synapsin immunocontent were prevented only by ketamine treatment. Collectively, these findings suggest that ketamine, but not guanosine, exerts a prophylactic effect against depressive-like behavior, an effect associated with the stimulation of long-lasting pro-synaptogenic signaling in the hippocampus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。