Suppressors of cytokine signaling 1 protein in a regenerative model of the Gekko japonicus spinal cord

壁虎脊髓再生模型中细胞因子信号传导 1 蛋白的抑制因子

阅读:6
作者:Bingqiang He, Wenjuan Wang, Chunshuai Sun, Ting Yang, Hui Li, Xiaojun Chen, Hao Liang, Honghua Song, Yongjun Wang, Yingjie Wang

Abstract

Demyelination is one of the pathological outcomes that occur immediately following spinal cord injury. Protection of oligodendrocytes against death/apoptosis proves to be beneficial for the preservation of neurological functions. Suppressors of cytokine signaling 1 protein inhibit the harmful effects of several inflammatory cytokines on oligodendrocytes, but its roles in spinal cord injury (SCI) induced apoptosis of oligodendrocytes remain unclear. We cloned suppressors of cytokine signaling 1 cDNA from Gekko japonicus (Japanese gecko) and analyzed the protein structure revealing the conserved domains contained in other vertebrate suppressors of cytokine signaling 1 proteins. The gecko suppressors of cytokine signaling 1 protein expression were increased in the injured spinal cord following gecko tail amputation and displayed colocalization with oligodendrocytes. The enforced expression of gecko suppressors of cytokine signaling 1 by adenovirus in the Gsn3 gecko oligodendrocyte cell line demonstrated that gecko suppressors of cytokine signaling 1 significantly suppressed cell apoptosis-induced by glucose deprivation. Determination of apoptosis-related proteins revealed that gecko suppressors of cytokine signaling 1 was able to activate extracellular regulated protein kinases (ERK) and serine/threonine protein kinases (Akt). The results presented a distinct protective role of gecko suppressors of cytokine signaling 1 in the regenerative model of the spinal cord, which may provide new cues for central nervous system repair in mammals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。