Structural Basis for the Regulation of Biofilm Formation and Iron Uptake in A. baumannii by the Blue-Light-Using Photoreceptor, BlsA

蓝光光感受器 BlsA 调节鲍曼不动杆菌生物膜形成和铁吸收的结构基础

阅读:6
作者:Iva Chitrakar, James N Iuliano, YongLe He, Helena A Woroniecka, Jinnette Tolentino Collado, Jinelle M Wint, Stephen G Walker, Peter J Tonge, Jarrod B French

Abstract

The opportunistic human pathogen, A. baumannii, senses and responds to light using the blue light sensing A (BlsA) photoreceptor protein. BlsA is a blue-light-using flavin adenine dinucleotide (BLUF) protein that is known to regulate a wide variety of cellular functions through interactions with different binding partners. Using immunoprecipitation of tagged BlsA in A. baumannii lysates, we observed a number of proteins that interact with BlsA, including several transcription factors. In addition to a known binding partner, the iron uptake regulator Fur, we identified the biofilm response regulator BfmR as a putative BlsA-binding partner. Using microscale thermophoresis, we determined that both BfmR and Fur bind to BlsA with nanomolar binding constants. To better understand how BlsA interacts with and regulates these transcription factors, we solved the X-ray crystal structures of BlsA in both a ground (dark) state and a photoactivated light state. Comparison of the light- and dark-state structures revealed that, upon photoactivation, the two α-helices comprising the variable domain of BlsA undergo a distinct conformational change. The flavin-binding site, however, remains largely unchanged from dark to light. These structures, along with docking studies of BlsA and Fur, reveal key mechanistic details about how BlsA propagates the photoactivation signal between protein domains and on to its binding partner. Taken together, our structural and biophysical data provide important insights into how BlsA controls signal transduction in A. baumannii and provides a likely mechanism for blue-light-dependent modulation of biofilm formation and iron uptake.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。