2-Bromopalmitate decreases spinal inflammation and attenuates oxaliplatin-induced neuropathic pain via reducing Drp1-mediated mitochondrial dysfunction

2-溴棕榈酸通过减少 Drp1 介导的线粒体功能障碍来减少脊髓炎症并减轻奥沙利铂引起的神经性疼痛

阅读:5
作者:Zhi-Bin Dong, Yu-Jia Wang, Meng-Lin Cheng, Bo-Jun Wang, Hong Lu, Hai-Li Zhu, Ling Liu, Min Xie

Abstract

Oxaliplatin (OXA) is a third-generation platinum compound with clinical activity in multiple solid tumors. Due to the repetition of chemotherapy cycle, OXA-induced chronic neuropathy presenting as paresthesia and pain. This study explored the neuropathy of chemotherapy pain and investigated the analgesic effect of 2-bromopalmitate (2-BP) on the pain behavior of OXA-induced rats. The chemotherapy pain rat model was established by the five consecutive administration of OXA (intraperitoneal, 4 mg/kg). After the establishment of OXA-induced rats, the pain behavior test, inflammatory signal analysis and mitochondrial function measurement were conducted. OXA-induced rats exhibited mechanical allodynia and spinal inflammatory infiltration. Our fluorescence and western blot analysis revealed spinal astrocytes were activated in OXA rats with up-regulation of astrocytic markers. In addition, NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome mediated inflammatory signal cascade was also activated. Inflammation was triggered by dysfunctional mitochondria which represented by increase in cyclooxygenase-2 (COX-2) level and manganese superoxide dismutase (Mn-SOD) activity. Intrathecally injection of 2-BP significantly attenuated dynamin-related protein 1 (Drp1) mediated mitochondrial fission, recovered mitochondrial function, suppressed NLRP3 inflammasome cascade, and consequently decreased mechanical pain sensitivity. For cell research, 2-BP treatment significantly reversed tumor necrosis factor-α (TNF-α) induced mitochondria membrane potential deficiency and high reactive oxygen species (ROS) level. These findings indicate 2-BP decreases spinal inflammation and relieves OXA-induced neuropathic pain via reducing Drp1-mediated mitochondrial dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。