The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation

Akt 抑制剂 Erufosine 可诱导前列腺癌细胞凋亡,并增强电离辐射的短期效应

阅读:10
作者:Justine Rudner, Carola-Ellen Ruiner, René Handrick, Hans-Jörg Eibl, Claus Belka, Verena Jendrossek

Background and purpose

The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is frequently deregulated in prostate cancer and associated with neoplastic transformation, malignant progression, and enhanced resistance to classical chemotherapy and radiotherapy. Thus, it is a promising target for therapeutic intervention. In the present study, the cytotoxic action of the Akt inhibitor Erufosine (ErPC3) was analyzed in prostate cancer cells and compared to the cytotoxicity of the PI3K inhibitor LY294002. Moreover, the efficacy of combined treatment with Akt inhibitors and ionizing radiation in prostate cancer cells was examined. Materials and

Conclusions

Our data suggest that constitutive Akt activation and survival are controlled by different different molecular mechanisms in the two prostate cancer cell lines - one which is sensitive to the Akt-inhibitor ErPC3 and one which is more sensitive to the PI3K-inhibitor LY294002. Our findings underline the importance for the definition of predictive biomarkers that allow the selection patients that may benefit from the treatment with a specific signal transduction modifier.

Methods

Prostate cancer cell lines PC3, DU145, and LNCaP were treated with ErPC3 (1-100 µM), LY294002 (25-100 µM), irradiated (0-10 Gy), or subjected to combined treatments. Cell viability was determined by the WST-1 assay. Apoptosis induction was analyzed by flow cytometry after staining with propidium iodide in a hypotonic citrate buffer, and by Western blotting using antibodies against caspase-3 and its substrate PARP. Akt activity and regulation of the expression of Bcl-2 family members and key downstream effectors involved in apoptosis regulation were examined by Western blot analysis.

Purpose

The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is frequently deregulated in prostate cancer and associated with neoplastic transformation, malignant progression, and enhanced resistance to classical chemotherapy and radiotherapy. Thus, it is a promising target for therapeutic intervention. In the present study, the cytotoxic action of the Akt inhibitor Erufosine (ErPC3) was analyzed in prostate cancer cells and compared to the cytotoxicity of the PI3K inhibitor LY294002. Moreover, the efficacy of combined treatment with Akt inhibitors and ionizing radiation in prostate cancer cells was examined. Materials and

Results

The Akt inhibitor ErPC3 exerted anti-neoplastic effects in prostate cancer cells, however with different potency. The anti-neoplastic action of ErPC3 was associated with reduced phosphoserine 473-Akt levels and induction of apoptosis. PC3 and LNCaP prostate cancer cells were also sensitive to treatment with the PI3K inhibitor LY294002. However, the ErPC3-sensitive PC3-cells were less susceptible to LY294002 than the ErPC3-refractory LNCaP cells. Although both cell lines were largely resistant to radiation-induced apoptosis, both cell lines showed higher levels of apoptotic cell death when ErPC3 was combined with radiotherapy. Conclusions: Our data suggest that constitutive Akt activation and survival are controlled by different different molecular mechanisms in the two prostate cancer cell lines - one which is sensitive to the Akt-inhibitor ErPC3 and one which is more sensitive to the PI3K-inhibitor LY294002. Our findings underline the importance for the definition of predictive biomarkers that allow the selection patients that may benefit from the treatment with a specific signal transduction modifier.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。