Activation of β-catenin by TGF-β1 promotes ligament-fibroblastic differentiation and inhibits cementoblastic differentiation of human periodontal ligament cells

TGF-β1激活β-catenin促进人牙周膜细胞向韧带成纤维细胞分化并抑制向牙骨质细胞分化

阅读:5
作者:Jong-Chan Lim, Sang-Hoon Bae, Gyutae Lee, Chun Jeih Ryu, Young-Joo Jang

Abstract

TGF-β and Wnt/β-catenin signaling pathways are known to be essential for the development of periodontal tissue. In this study, we examined the crosstalk between TGF-β and Wnt/β-catenin signaling in ligament-fibroblastic differentiation of human periodontal ligament cells (hPDLCs). TGF-β1 treatment significantly increased the expression of ligament-fibroblastic markers, but such expression was preventing by treatment with SB431542, a TGF-β type I receptor inhibitor. As well as phosphorylation of Smad3, TGF-β1 increased β-catenin activation. The depletion of β-catenin reduced the expression of ligament-fibroblastic markers, suggesting that β-catenin is essential for ligament differentiation. The effect of TGF-β1 on β-catenin activation did not seem to be much correlated with Wnt stimuli, but endogenous DKK1 was suppressed by TGF-β1, indicating that β-catenin activation could be increased much more by TGF-β1. In addition to DKK1 suppression, Smad3 phosphorylation by TGF-β1 facilitated the nuclear translocation of cytoplasmic β-catenin. In contrast to ligament-fibroblastic differentiation, inhibition of TGF-β1 signaling was needed for cementoblastic differentiation of hPDLCs. BMP7 treatment accompanied by inhibition of TGF-β1 signaling had a synergistic effect on cementoblastic differentiation. In conclusion, β-catenin activation by TGF-β1 caused ligament-fibroblastic differentiation of hPDLCs, and the presence of TGF-β1 stimuli basically determined whether hPDLCs are differentiated into ligament progenitor or cementoblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。