Ultrasensitive quantification of tumor mRNAs in extracellular vesicles with an integrated microfluidic digital analysis chip

利用集成微流体数字分析芯片对细胞外囊泡中的肿瘤 mRNA 进行超灵敏定量

阅读:8
作者:Peng Zhang, Jennifer Crow, Divya Lella, Xin Zhou, Glenson Samuel, Andrew K Godwin, Yong Zeng

Abstract

Extracellular vesicles (EVs) present a promising liquid biopsy for cancer diagnosis. However, it remains a daunting challenge to quantitatively measure molecular contents of EVs including tumor-associated mRNAs. Herein, we report a configurable microwell-patterned microfluidic digital analysis platform combined with a dual-probe hybridization assay for PCR-free, single-molecule detection of specific mRNAs in EVs. The microwell array in our device is configurable between the flow-through assay mode for enhanced hybridization capture and tagging of mRNAs and the digital detection mode based on femtoliter-scale enzymatic signal amplification for single-molecule counting of surface-bound targets. Furthermore, a dual-probe hybridization assay has been developed to enhance the sensitivity of the digital single-molecule detection of EV mRNAs. Combining the merits of the chip design and the dual-probe digital mRNA hybridization assay, the integrated microfluidic system has been demonstrated to afford quantitative detection of synthetic GAPDH mRNA with a LOD as low as 20 aM. Using this technology, we quantified the level of GAPDH and EWS-FLI1 mRNAs in EVs derived from two cell lines of peripheral primitive neuroectodermal tumor (PNET), CHLA-9 and CHLA-258. Our measurements detected 64.6 and 43.5 copies of GAPDH mRNA and 6.5 and 0.277 copies of EWS-FLI1 fusion transcripts per 105 EVs derived from CHLA-9 and CHLA-258 cells, respectively. To our knowledge, this is the first demonstration of quantitative measurement of EWS-FLI1 mRNA copy numbers in Ewing Sarcoma (EWS)-derived EVs. These results highlight the ultralow frequency of tumor-specific mRNA markers in EVs and the necessity of developing highly sensitive methods for analysis of EV mRNAs. The microfluidic digital mRNA analysis platform presented here would provide a useful tool to facilitate quantitative analysis of tumor-associated EV mRNAs for liquid biopsy-based cancer diagnosis and monitoring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。