A simple method based on Sanger sequencing and MS Word wildcard searching to identify Cas9-induced frameshift mutations

基于 Sanger 测序和 MS Word 通配符搜索的简单方法来识别 Cas9 诱导的移码突变

阅读:7
作者:Hui Jie, Zhuoling Li, Ping Wang, Linjie Zhao, Qian Zhang, Xiaomin Yao, Xiangrong Song, Yinglan Zhao, Shaohua Yao

Abstract

Recent advances in targeted genome editing have enabled sequence-specific modifications in eukaryotic genomes. As it can be easily reprogrammed, the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 nuclease system has been studied extensively and is now a widely used genome editing tool. Generally, Cas9 nucleases are designed to target the coding regions in exons of protein-coding genes, which are expected to cause frameshift indel mutations and interrupt protein expression. In such cases, it is often necessary to separate single clones that harbor double frameshift mutant alleles from clones that harbor the wild-type allele or an in-frame mutant allele. We developed a simple and efficient method to identify frameshift mutations in diploid genomes based on Sanger sequencing and MS Word wildcard searching (SWS). As indel mutations induced by Cas9 are varied, Sanger sequencing of PCR products from a single mutant genome will generate double peaks that begin at the indel sites. By positioning the putative sequences deduced from the double peak regions in the sequencing graph onto the wild-type sequence by MS Word wildcard searching, it is possible to predict exactly how many nucleotides were deleted or inserted in each allele of the genome. The SWS strategy greatly facilitates the process of identifying single clones with biallelic frameshift mutations from pooled cells or model organisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。