Daily red wine consumption improves vascular function by a soluble guanylyl cyclase-dependent pathway

每日饮用红酒可通过可溶性鸟苷酸环化酶依赖性途径改善血管功能

阅读:6
作者:Ilse P G Botden, Janneke G Langendonk, Marcel E Meima, Frans Boomsma, Ann L B Seynhaeve, Timo L M ten Hagen, A H Jan Danser, Eric J G Sijbrands

Background

Polyphenols in red wine are supposed to improve endothelial function. We investigated whether daily red wine consumption improves in-vivo vascular function by reducing endothelin-1 (ET-1). Additional pathways mediating this effect were studied using porcine coronary arteries (PCAs).

Conclusions

The enhanced FBF response following 3 weeks of red wine consumption, but not after one glass, reflects a change in smooth muscle sensitivity. Alterations in sGC responsiveness/activity, rather than changes in ET-1, appear to underlie this phenomenon.

Methods

Eighteen young healthy women drank red wine daily for 3 weeks. Vascular function was evaluated by determining forearm blood flow (FBF) responses to endothelium-dependent (acetylcholine (ACh)) and endothelium-independent (sodium nitroprusside (SNP)) vasodilators. PCAs were suspended in organ baths and exposed to the endothelium-dependent vasodilator bradykinin, the nitric oxide (NO) donor S-nitroso-N-acetyl-L,L-penicillamine (SNAP) and/or red wine extract (RWE).

Results

ACh-induced and SNP-induced FBF increases were equally enhanced after 3 weeks of red wine consumption, but an immediate enhancement (i.e., after drinking the first glass) was not observed. Vice versa, plasma ET-1 levels were not decreased after 3 weeks, but we observed an acute drop after drinking one glass of wine. RWE relaxed preconstricted PCAs in an endothelium-, NO-, and soluble guanylyl cyclase (sGC)/guanosine-3',5'-cyclic monophosphate (cGMP)-dependent manner. Short RWE exposure reduced the response to bradykinin and SNAP by inactivating sGC. This effect disappeared upon prolonged RWE exposure. Conclusions: The enhanced FBF response following 3 weeks of red wine consumption, but not after one glass, reflects a change in smooth muscle sensitivity. Alterations in sGC responsiveness/activity, rather than changes in ET-1, appear to underlie this phenomenon.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。