Synthetization and characterization of SnCaAl2O3 nanocomposite and using as a superior adsorbent for Pb, Zn, and Cd ions in polluted water

SnCaAl2O3 纳米复合材料的合成和表征及其作为污染水中 Pb、Zn 和 Cd 离子的优良吸附剂的应用

阅读:3
作者:Ali Sayqal, Moustafa Gamal Snousy, Mahmoud F Mubarak, Ahmed H Ragab, Atef Mohamed Gad Mohamed, Abeer El Shahawy

Abstract

The presence of heavy metals in drinking water or wastewater poses a serious threat to the ecosystem. Hence, the present study focused on synthesizing SnCaAl2O3 core-shell nanoparticles (C.N.P.s) in the α-Alumina phase by thermal annealing a stacked structure sandwiched between two Al2O3 layers at low temperatures. The obtained structure showed Sn N.P. floating gate with an Al2O3 dielectric stacked tunneling barrier to remove the excess of these heavy metals from polluted water. To characterize the prepared composites, X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) were used. The synthesized SnCaAl2O3 C.N.P.s composite was examined to utilize it as an adsorbent for removing Zn, Cd, and Pb divalent cations. The removal efficiency was studied by various parameters such as adsorbent dose, pH, contact time, metal concentrations, temperature, and coexisting ions. The experimental results were tested via Langmuir and Freundlich isotherm models. The obtained results were convenient to the Freundlich isotherm model. Moreover, the adsorption thermodynamic behavior of Zn+2, Cd+2, and Pb+2 on the synthesized composite was examined, and the process is endothermic and spontaneous under experimental conditions. The results illustrated that the adsorption efficiency of the SnCaAl2O3 core-shell nanoparticles (C.N.P.s) ranged from 88% to about 100% for all cations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。