HCV genotyping from NGS short reads and its application in genotype detection from HCV mixed infected plasma

基于 NGS 短读长的 HCV 基因分型及其在 HCV 混合感染血浆基因型检测中的应用

阅读:7
作者:Ping Qiu, Richard Stevens, Bo Wei, Fred Lahser, Anita Y M Howe, Joel A Klappenbach, Matthew J Marton

Abstract

Genotyping of hepatitis C virus (HCV) plays an important role in the treatment of HCV. As new genotype-specific treatment options become available, it has become increasingly important to have accurate HCV genotype and subtype information to ensure that the most appropriate treatment regimen is selected. Most current genotyping methods are unable to detect mixed genotypes from two or more HCV infections. Next generation sequencing (NGS) allows for rapid and low cost mass sequencing of viral genomes and provides an opportunity to probe the viral population from a single host. In this paper, the possibility of using short NGS reads for direct HCV genotyping without genome assembly was evaluated. We surveyed the publicly-available genetic content of three HCV drug target regions (NS3, NS5A, NS5B) in terms of whether these genes contained genotype-specific regions that could predict genotype. Six genotypes and 38 subtypes were included in this study. An automated phylogenetic analysis based HCV genotyping method was implemented and used to assess different HCV target gene regions. Candidate regions of 250-bp each were found for all three genes that have enough genetic information to predict HCV genotypes/subtypes. Validation using public datasets shows 100% genotyping accuracy. To test whether these 250-bp regions were sufficient to identify mixed genotypes, we developed a random primer-based method to sequence HCV plasma samples containing mixtures of two HCV genotypes in different ratios. We were able to determine the genotypes without ambiguity and to quantify the ratio of the abundances of the mixed genotypes in the samples. These data provide a proof-of-concept that this random primed, NGS-based short-read genotyping approach does not need prior information about the viral population and is capable of detecting mixed viral infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。