Background
Porcine xenografts are a promising source of scarce transplantable organs, but stimulate intense thrombosis of human blood despite targeted genetic and pharmacologic interventions. Current experimental models do not enable study of the blood/endothelial interface to investigate adhesive interactions and thrombosis at the cellular level under physiologic conditions. The
Significance
This novel, high-throughput assay enabled dynamic modeling of whole-blood thrombosis on intact endothelium under physiologic conditions, and allowed mechanistic characterization of endothelial and platelet interactions. Applied to xenogeneic thrombosis, it enables future studies regarding the effect of modifying the porcine genotype on sheer-stress-dependent events that characterize xenograft injury. This in-vitro platform is likely to prove broadly useful to study thrombosis and endothelial interactions under dynamic physiologic conditions.
