Time-course global proteome analyses reveal an inverse correlation between Aβ burden and immunoglobulin M levels in the APPNL-F mouse model of Alzheimer disease

时间过程整体蛋白质组分析表明,在阿尔茨海默病的 APPNL-F 小鼠模型中,Aβ 负担与免疫球蛋白 M 水平呈负相关

阅读:7
作者:Hansen Wang, Declan Williams, Jennifer Griffin, Takashi Saito, Takaomi C Saido, Paul E Fraser, Ekaterina Rogaeva, Gerold Schmitt-Ulms

Abstract

Alzheimer disease (AD) stands out amongst highly prevalent diseases because there is no effective treatment nor can the disease be reliably diagnosed at an early stage. A hallmark of AD is the accumulation of aggregation-prone amyloid β peptides (Aβ), the main constituent of amyloid plaques. To identify Aβ-dependent changes to the global proteome we used the recently introduced APPNL-F mouse model of AD, which faithfully recapitulates the Aβ pathology of the disease, and a workflow that interrogated the brain proteome of these mice by quantitative mass spectrometry at three different ages. The elevated Aβ burden in these mice was observed to cause almost no changes to steady-state protein levels of the most abundant >2,500 brain proteins, including 12 proteins encoded by well-confirmed AD risk loci. The notable exception was a striking reduction in immunoglobulin heavy mu chain (IGHM) protein levels in homozygote APPNL-F/NL-F mice, relative to APPNL-F/wt littermates. Follow-up experiments revealed that IGHM levels generally increase with age in this model. Although discovered with brain samples, the relative IGHM depletion in APPNL-F/NL-F mice was validated to manifest systemically in the blood, and did not extend to other blood proteins, including immunoglobulin G. Results presented are consistent with a cause-effect relationship between the excessive accumulation of Aβ and the selective depletion of IGHM levels, which may be of relevance for understanding the etiology of the disease and ongoing efforts to devise blood-based AD diagnostics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。