Stimulus-induced uncoupling of extracellular signal-regulated kinase phosphorylation from nuclear localization is dependent on docking domain interactions

刺激诱导的细胞外信号调节激酶磷酸化与核定位的分离依赖于对接域相互作用

阅读:13
作者:Christopher J Caunt, Craig A McArdle

Abstract

Many stimuli activate the extracellular signal-regulated kinase (ERK) by phosphorylation on the TEY motif. Activated ERK characteristically accumulates in the nucleus, but the underlying mechanisms involved are unclear. Using automated microscopy to explore ERK regulation in single intact cells, we find that, when protein kinase C or epidermal growth factor receptors are activated, a substantial fraction of the ERK nuclear localization response is uncoupled from TEY phosphorylation. This phosphorylation-unattributable nuclear localization response occurs in the presence of inhibitors of tyrosine phosphatases and protein synthesis. It was also evident with a catalytically inactive ERK2-GFP mutant, and with a mutant incapable of binding the DEF (docking site for ERK, F/Y-X-F/Y-P) domains found in many ERK binding partners. It was, however, reduced by MEK inhibition and by mutations preventing either TEY phosphorylation or D (docking)-domain-dependent ERK binding (D319N). Thus, we show that MEK-catalysed ERK phosphorylation is necessary but not sufficient for the full nuclear localization response: there is an additional phosphorylation-unattributable component of the response that does not reflect induced expression of nuclear anchors and is independent of ERK catalytic activity or DEF-domain binding. It is, however, dependent upon D-domain binding, highlighting distinct roles of ERK motifs during nuclear targeting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。