Both ubiquitin ligases FBXW8 and PARK2 are sequestrated into insolubility by ATXN2 PolyQ expansions, but only FBXW8 expression is dysregulated

泛素连接酶 FBXW8 和 PARK2 均因 ATXN2 PolyQ 扩增而被隔离到不溶性状态,但只有 FBXW8 表达失调

阅读:6
作者:Melanie Vanessa Halbach, Tanja Stehning, Ewa Damrath, Marina Jendrach, Nesli Ece Şen, A Nazlı Başak, Georg Auburger

Abstract

The involvement of the ubiquitin-proteasome system (UPS) in the course of various age-associated neurodegenerative diseases is well established. The single RING finger type E3 ubiquitin-protein ligase PARK2 is mutated in a Parkinson's disease (PD) variant and was found to interact with ATXN2, a protein where polyglutamine expansions cause Spinocerebellar ataxia type 2 (SCA2) or increase the risk for Levodopa-responsive PD and for the motor neuron disease Amyotrophic lateral sclerosis (ALS). We previously reported evidence for a transcriptional induction of the multi-subunit RING finger Skp1/Cul/F-box (SCF) type E3 ubiquitin-protein ligase complex component FBXW8 in global microarray profiling of ATXN2-expansion mouse cerebellum and demonstrated its role for ATXN2 degradation in vitro. Now, we documented co-localization in vitro and co-immunoprecipitations both in vitro and in vivo, which indicate associations of FBXW8 with ATXN2 and PARK2. Both FBXW8 and PARK2 proteins are driven into insolubility by expanded ATXN2. Whereas the FBXW8 transcript upregulation by ATXN2- expansion was confirmed also in qPCR of skin fibroblasts and blood samples of SCA2 patients, a FBXW8 expression dysregulation was not observed in ATXN2-deficient mice, nor was a PARK2 transcript dysregulation observed in any samples. Jointly, all available data suggest that the degradation of wildtype and mutant ATXN2 is dependent on FBXW8, and that ATXN2 accumulation selectively modulates FBXW8 levels, while PARK2 might act indirectly through FBXW8. The effects of ATXN2-expansions on FBXW8 expression in peripheral tissues like blood may become useful for clinical diagnostics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。