An Intuitive Approach for Predicting Potential Human Health Risk with the Tox21 10k Library

使用 Tox21 10k 库预测潜在人类健康风险的直观方法

阅读:7
作者:Nisha S Sipes, John F Wambaugh, Robert Pearce, Scott S Auerbach, Barbara A Wetmore, Jui-Hua Hsieh, Andrew J Shapiro, Daniel Svoboda, Michael J DeVito, Stephen S Ferguson

Abstract

In vitro-in vivo extrapolation (IVIVE) analyses translating high-throughput screening (HTS) data to human relevance have been limited. This study represents the first report applying IVIVE approaches and exposure comparisons using the entirety of the Tox21 federal collaboration chemical screening data, incorporating assay response efficacy and quality of concentration-response fits, and providing quantitative anchoring to first address the likelihood of human in vivo interactions with Tox21 compounds. This likelihood was assessed using a maximum blood concentration to in vitro response ratio approach (Cmax/AC50), analogous to decision-making methods for clinical drug-drug interactions. Fraction unbound in plasma (fup) and intrinsic hepatic clearance (CLint) parameters were estimated in silico and incorporated in a three-compartment toxicokinetic (TK) model to first predict Cmax for in vivo corroboration using therapeutic scenarios. Toward lower exposure scenarios, 36 compounds of 3925 unique chemicals with curated activity in the HTS data using high-quality dose-response model fits and ≥40% efficacy gave "possible" human in vivo interaction likelihoods lower than median human exposures predicted in the United States Environmental Protection Agency's ExpoCast program. A publicly available web application has been designed to provide all Tox21-ToxCast dose-likelihood predictions. Overall, this approach provides an intuitive framework to relate in vitro toxicology data rapidly and quantitatively to exposures using either in vitro or in silico derived TK parameters and can be thought of as an important step toward estimating plausible biological interactions in a high-throughput risk-assessment framework.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。