Doxycycline preserves chondrocyte viability and function in human and calf articular cartilage ex vivo

强力霉素可保留体外人类和小腿关节软骨中软骨细胞的活力和功能

阅读:6
作者:Li Yue, Brian Vuong, Hongwei Yao, Brett D Owens

Abstract

Prolonging chondrocyte survival is essential to ensure fresh osteochondral (OC) grafts for treatment of articular cartilage lesions. Doxycycline has been shown to enhance cartilage growth, disrupt terminal differentiation of chondrocytes, and inhibit cartilage matrix degradation. It is unknown whether doxycycline prolongs chondrocyte survival in OC grafts. We hypothesized that doxycycline protects against chondrocyte death and maintains function of articular cartilage. To test this hypothesis, we employed human and calf articular cartilages, and incubated chondrocytes isolated from cartilage or cartilage plugs with doxycycline (0, 1 or 10 μg/ml) at either 37°C or 4°C. Chondrocyte viability, apoptosis, glycosaminoglycan (GAG), collagen, and mechanical test in cartilage plugs were measured. We found that reduced chondrocyte viability, increased chondrocyte apoptosis, reduced GAG contents, and impaired equilibrium modulus in cartilage plugs were observed in a time-dependent manner at both 37°C and 4°C. Chondrocyte viability was further reduced when the plugs were cultured at 4°C as compared to 37°C. Doxycycline prolonged viability and reduced apoptosis of chondrocytes during culture of cartilage plugs. Functionally, doxycycline protected against reduced production of GAG and collagen II as well as impaired mechanical properties in cartilage plugs during culture. Mechanistically, doxycycline increased mitochondrial respiration in cultured chondrocytes. In conclusion, preservation at 37°C is beneficial for maintaining chondrocyte viability in cartilage plugs compared to 4°C. Incubation of doxycycline protects against chondrocyte apoptosis, reduced extracellular matrix, and impaired mechanical properties in cartilage plugs. The findings provide a potential approach using doxycycline at 37°C to preserve chondrocyte viability in fresh OC grafts for treatment of articular cartilage lesions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。