Anti-inflammatory mechanism of ginseng saponin metabolite Rh3 in lipopolysaccharide-stimulated microglia: critical role of 5'-adenosine monophosphate-activated protein kinase signaling pathway

人参皂苷代谢物 Rh3 在脂多糖刺激的小胶质细胞中的抗炎机制:5'-腺苷酸活化蛋白激酶信号通路的关键作用

阅读:11
作者:Yu Young Lee, Jin-Sun Park, Eun-Jung Lee, Sang-Yun Lee, Dong-Hyun Kim, Jihee Lee Kang, Hee-Sun Kim

Abstract

Ginsenoside Rh3 is a bacterial metabolite of Rg5, which is the main constituent of heat-processed ginseng. The present study was undertaken to examine the anti-inflammatory effect of ginsenoside Rh3 in lipopolysaccharide (LPS)-stimulated microglia. Rh3 inhibits the expressions of inducible nitric oxide synthase (iNOS) and proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6, at mRNA and protein levels, while Rh3 enhanced anti-inflammatory hemeoxygenase-1 expression. Moreover, Rh3 inhibited nuclear factor-κB (NF-κB) by upregulation of sirtuin 1 (SIRT1) and enhanced Nrf2 DNA-binding activities. Analysis of signaling pathways revealed that Rh3 enhanced the phosphorylation of 5'-adenosine monophosphate-activated protein kinase (AMPK) and inhibited Akt and janus kinase 1 (JAK1)/signal transducer and activator of transcription 1 (STAT1) induced by LPS. By treatment of BV2 cells with AICAR (a pharmacological activator of AMPK), we found that AMPK is an upstream regulator of phosphatidylinositol 3-kinase (PI3K)/Akt and JAK1/STAT1. Furthermore, AMPK knockdown experiments demonstrated the anti-inflammatory role of AMPK in LPS/Rh3-treated BV2 microglia. Our data collectively suggest that Rh3 exerts an anti-inflammatory effect in microglia by modulating AMPK and its downstream signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。