Research on Distinguishing Fish Meal Quality Using Different Characteristic Parameters Based on Electronic Nose Technology

基于电子鼻技术利用不同特征参数鉴别鱼粉品质的研究

阅读:5
作者:Pei Li, Zouhong Ren, Kaiyi Shao, Hequn Tan, Zhiyou Niu

Abstract

In this paper, a portable electronic nose, that was independently developed, was employed to detect and classify a fish meal of different qualities. SPME-GC-MS (solid phase microextraction gas chromatography mass spectrometry) analysis of fish meal was presented. Due to the large amount of data of the original features detected by the electronic nose, a reasonable selection of the original features was necessary before processing, so as to reduce the dimension. The integral value, wavelet energy value, maximum gradient value, average differential value, relation steady-state response average value and variance value were selected as six different characteristic parameters, to study fish meal samples with different storage time grades. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), and five recognition modes, which included the multilayer perceptron neural network classification method, random forest classification method, k nearest neighbor algorithm, support vector machine algorithm, and Bayesian classification method, were employed for the classification. The result showed that the RF classification method had the highest accuracy rate for the classification algorithm. The highest accuracy rate for distinguishing fish meal samples with different qualities was achieved using the integral value, stable value, and average differential value. The lowest accuracy rate for distinguishing fish meal samples with different qualities was achieved using the maximum gradient value. This finding shows that the electronic nose can identify fish meal samples with different storage times.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。