β1 integrin is a sensor of blood flow direction

β1整合素是血流方向的传感器

阅读:5
作者:Ioannis Xanthis, Celine Souilhol, Jovana Serbanovic-Canic, Hannah Roddie, Antreas C Kalli, Maria Fragiadaki, Raymond Wong, Dhruv R Shah, Janet A Askari, Lindsay Canham, Nasreen Akhtar, Shuang Feng, Victoria Ridger, Jonathan Waltho, Emmanuel Pinteaux, Martin J Humphries, Matthew T Bryan, Paul C Evans

Abstract

Endothelial cell (EC) sensing of fluid shear stress direction is a critical determinant of vascular health and disease. Unidirectional flow induces EC alignment and vascular homeostasis, whereas bidirectional flow has pathophysiological effects. ECs express several mechanoreceptors that respond to flow, but the mechanism for sensing shear stress direction is poorly understood. We determined, by using in vitro flow systems and magnetic tweezers, that β1 integrin is a key sensor of force direction because it is activated by unidirectional, but not bidirectional, shearing forces. β1 integrin activation by unidirectional force was amplified in ECs that were pre-sheared in the same direction, indicating that alignment and β1 integrin activity has a feedforward interaction, which is a hallmark of system stability. En face staining and EC-specific genetic deletion studies in the murine aorta revealed that β1 integrin is activated and is essential for EC alignment at sites of unidirectional flow but is not activated at sites of bidirectional flow. In summary, β1 integrin sensing of unidirectional force is a key mechanism for decoding blood flow mechanics to promote vascular homeostasis.This article has an associated First Person interview with the first author of the paper.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。