Fluorescence Resonance Energy Transfer-Based Aptasensor Made of Carbon-Based Nanomaterials for Detecting Lactoferrin at Low Concentrations

基于荧光共振能量转移的碳基纳米材料适体传感器用于检测低浓度乳铁蛋白

阅读:8
作者:Yingqi Zhang, Jin Zhang

Abstract

Lactoferrin in the saliva is recently considered a biomarker for the diagnosis of Alzheimer's disease. In this paper, a solution-based, user-friendly biosensing system has been developed to quickly measure lactoferrin at low concentrations. This aptasensor is applied to the fluorescence resonance energy transfer (FRET) quenching mechanism, in which carbon quantum dots (CDs) act as the FRET donor; the FRET quenching element is made of graphene oxide (GO) nanosheets which show good quenching capability. CDs bioconjugated with a chosen aptamer (CDs-aptamer) have the strongest emission (λem) at 447 nm when excitation (λex) is 365 nm. Due to the interaction of the aptamer and GO through the π-π* interaction, GO can approach CDs, resulting in FRET quenching. In the presence of lactoferrin, the fluorescence intensity of CDs-aptamer is restored as the binding affinity between lactoferrin and the aptamer is stronger than the π-π* interaction between the aptamer and GO. A linear relationship between the restored fluorescence intensity and the concentration of lactoferrin in artificial saliva with a range from 4 to 16 μg/mL is observed. The limit of detection of the solution-based aptasensor is estimated at 2.48 μg/mL. In addition, the sensing performance of the aptasensor made of carbon nanomaterials has been evaluated to test different proteins including major salivary proteins. The results show that this aptasensor has a high selectivity to detect LF with a low concentration, <16 μg/mL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。