Human esophageal myofibroblasts increase squamous epithelial thickness via paracrine mechanisms in an in vitro model of gastroesophageal reflux disease

在胃食管反流病体外模型中,人食管肌成纤维细胞通过旁分泌机制增加鳞状上皮厚度

阅读:4
作者:Liping Hu, Chunying Zhang, Kevin Yang, Meng Li, Anisa Shaker

Abstract

The pathogenesis of esophageal injury in gastroesophageal reflux disease (GERD) is incompletely understood. We modeled exposure of human esophageal myofibroblasts (HEMFs) to gastroesophageal reflux by repeated treatment with pH 4.5 and pH 4.5 bile salts and determined the effects on the epithelium in a 3D organotypic-like air-liquid interface model. Total, basal and supra-basal thickness of the epithelium were measured and immunostaining for p63, for basal (CK 14) and supra-basal (CK 4) squamous differentiation markers, and for cell proliferation (PCNA) were performed. Epithelial cell proliferation in response to HEMF conditioned media was also assessed in 2D culture. In the 3D organotypic model, total epithelial thickness increased similarly with pH 4.5 and pH 4.5 bile salt treated versus untreated and bile salt treated HEMF conditioned media. Epithelial p63 immunostaining was increased and multilayered. There was expansion of the CK14+ basal and CK4+ supra-basal layers in the epithelium established with conditioned media from pH 4.5 and pH 4.5 bile salt treated HEMFs versus untreated HEMF conditioned media. PCNA + cells per μm of tissue were unchanged in the basal layer across all treatment conditions while PCNA + cells per total DAPI + cells were decreased. In 2D culture, basal epithelial proliferation decreased with conditioned media from pH 4.5 and pH 4.5 bile salt treated HEMFs compared to conditioned media from untreated HEMF conditioned media. Secreted factors from HEMFs treated with acidic stimuli encountered in GERD increase epithelial thickness compared to secreted factors from untreated HEMFs and expand both basal and supra-basal layers. Our findings demonstrate for the first time paracrine regulation of the squamous epithelium from acid stimulated HEMFs. The effects of secreted factors from acid treated HEMFs on basal cell proliferation in this model and the mechanism mediating the increase in epithelial thickness merit further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。