Antioxidant biomarkers from Vanda coerulea stems reduce irradiated HaCaT PGE-2 production as a result of COX-2 inhibition

由于 COX-2 抑制,来自万代兰茎的抗氧化生物标志物可减少辐照 HaCaT PGE-2 的产生

阅读:9
作者:Charlotte Simmler, Cyril Antheaume, Annelise Lobstein

Background

In our investigations towards the isolation of potentially biologically active constituents from Orchidaceae, we carried out phytochemical and biological analyses of Vanda species. A preliminary biological screening revealed that Vanda coerulea (Griff. ex. Lindl) crude hydro-alcoholic stem extract displayed the best DPPH /(•)OH radical scavenging activity and in vitro inhibition of type 2 prostaglandin (PGE-2) release from UV(B) (60 mJ/cm(2)) irradiated HaCaT keratinocytes. Principal findings: Bio-guided fractionation and phytochemical analysis led to the isolation of five stilbenoids: imbricatin (1) methoxycoelonin (2) gigantol (3) flavidin (4) and coelonin (5). Stilbenoids (1-3) were the most concentrated in crude hydro-alcoholic stem extract and were considered as Vanda coerulea stem biomarkers. Dihydro-phenanthropyran (1) and dihydro-phenanthrene (2) displayed the best DPPH/(•)OH radical scavenging activities as well as HaCaT intracellular antioxidant properties (using DCFH-DA probe: IC(50) 8.8 µM and 9.4 µM, respectively) compared to bibenzyle (3) (IC(50) 20.6 µM). In turn, the latter showed a constant inhibition of PGE-2 production, stronger than stilbenoids (1) and (2) (IC(50) 12.2 µM and 19.3 µM, respectively). Western blot analysis revealed that stilbenoids (1-3) inhibited COX-2 expression at 23 µM. Interestingly, stilbenoids (1) and (2) but not (3) were able to inhibit human recombinant COX-2 activity. Conclusions: Major antioxidant stilbenoids (1-3) from Vanda coerulea stems displayed an inhibition of UV(B)-induced COX-2 expression. Imbricatin (1) and methoxycoelonin (2) were also able to inhibit COX-2 activity in a concentration-dependent manner thereby reducing PGE-2 production from irradiated HaCaT cells. Our studies suggest that stilbenoids (1-3) could be potentially used for skin protection against the damage caused by UV(B) exposure.

Conclusions

Major antioxidant stilbenoids (1-3) from Vanda coerulea stems displayed an inhibition of UV(B)-induced COX-2 expression. Imbricatin (1) and methoxycoelonin (2) were also able to inhibit COX-2 activity in a concentration-dependent manner thereby reducing PGE-2 production from irradiated HaCaT cells. Our studies suggest that stilbenoids (1-3) could be potentially used for skin protection against the damage caused by UV(B) exposure.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。