Crtc1 activates a transcriptional program deregulated at early Alzheimer's disease-related stages

Crtc1 激活在阿尔茨海默病相关早期阶段失调的转录程序

阅读:5
作者:Arnaldo Parra-Damas, Jorge Valero, Meng Chen, Judit España, Elsa Martín, Isidro Ferrer, José Rodríguez-Alvarez, Carlos A Saura

Abstract

Cognitive decline is associated with gene expression changes in the brain, but the transcriptional mechanisms underlying memory impairments in cognitive disorders, such as Alzheimer's disease (AD), are largely unknown. Here, we aimed to elucidate relevant mechanisms responsible for transcriptional changes underlying early memory loss in AD by examining pathological, behavioral, and transcriptomic changes in control and mutant β-amyloid precursor protein (APPSw,Ind) transgenic mice during aging. Genome-wide transcriptome analysis using mouse microarrays revealed deregulation of a gene network related with neurotransmission, synaptic plasticity, and learning/memory in the hippocampus of APPSw,Ind mice after spatial memory training. Specifically, APPSw,Ind mice show changes on a cAMP-responsive element binding protein (CREB)-regulated transcriptional program dependent on the CREB-regulated transcription coactivator-1 (Crtc1). Interestingly, synaptic activity and spatial memory induces Crtc1 dephosphorylation (Ser151), nuclear translocation, and Crtc1-dependent transcription in the hippocampus, and these events are impaired in APPSw,Ind mice at early pathological and cognitive decline stages. CRTC1-dependent genes and CRTC1 levels are reduced in human hippocampus at intermediate Braak III/IV pathological stages. Importantly, adeno-associated viral-mediated Crtc1 overexpression in the hippocampus efficiently reverses Aβ-induced spatial learning and memory deficits by restoring a specific subset of Crtc1 target genes. Our results reveal a critical role of Crtc1-dependent transcription on spatial memory formation and provide the first evidence that targeting brain transcriptome reverses memory loss in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。