Discovering Targets of Non-enzymatic Acylation by Thioester Reactivity Profiling

通过硫酯反应性分析发现非酶酰化靶点

阅读:6
作者:Rhushikesh A Kulkarni, Andrew J Worth, Thomas T Zengeya, Jonathan H Shrimp, Julie M Garlick, Allison M Roberts, David C Montgomery, Carole Sourbier, Benjamin K Gibbs, Clementina Mesaros, Yien Che Tsai, Sudipto Das, King C Chan, Ming Zhou, Thorkell Andresson, Allan M Weissman, W Marston Linehan, Ian

Abstract

Non-enzymatic protein modification driven by thioester reactivity is thought to play a major role in the establishment of cellular lysine acylation. However, the specific protein targets of this process are largely unknown. Here we report an experimental strategy to investigate non-enzymatic acylation in cells. Specifically, we develop a chemoproteomic method that separates thioester reactivity from enzymatic utilization, allowing selective enrichment of non-enzymatic acylation targets. Applying this method to cancer cell lines identifies numerous candidate targets of non-enzymatic acylation, including several enzymes in lower glycolysis. Functional studies highlight malonyl-CoA as a reactive thioester metabolite that can modify and inhibit glycolytic enzyme activity. Finally, we show that synthetic thioesters can be used as novel reagents to probe non-enzymatic acylation in living cells. Our studies provide new insights into the targets and drivers of non-enzymatic acylation, and demonstrate the utility of reactivity-based methods to experimentally investigate this phenomenon in biology and disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。