Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function

海马和皮质兴奋性神经元中的 Nampt 表达对认知功能至关重要

阅读:4
作者:Liana Roberts Stein, David F Wozniak, Joshua T Dearborn, Shunsuke Kubota, Rajendra S Apte, Yukitoshi Izumi, Charles F Zorumski, Shin-ichiro Imai

Abstract

Nicotinamide adenine dinucleotide (NAD(+)) is an enzyme cofactor or cosubstrate in many essential biological pathways. To date, the primary source of neuronal NAD(+) has been unclear. NAD(+) can be synthesized from several different precursors, among which nicotinamide is the substrate predominantly used in mammals. The rate-limiting step in the NAD(+) biosynthetic pathway from nicotinamide is performed by nicotinamide phosphoribosyltransferase (Nampt). Here, we tested the hypothesis that neurons use intracellular Nampt-mediated NAD(+) biosynthesis by generating and evaluating mice lacking Nampt in forebrain excitatory neurons (CaMKIIαNampt(-/-) mice). CaMKIIαNampt(-/-) mice showed hippocampal and cortical atrophy, astrogliosis, microgliosis, and abnormal CA1 dendritic morphology by 2-3 months of age. Importantly, these histological changes occurred with altered intrahippocampal connectivity and abnormal behavior; including hyperactivity, some defects in motor skills, memory impairment, and reduced anxiety, but in the absence of impaired sensory processes or long-term potentiation of the Schaffer collateral pathway. These results clearly demonstrate that forebrain excitatory neurons mainly use intracellular Nampt-mediated NAD(+) biosynthesis to mediate their survival and function. Studying this particular NAD(+) biosynthetic pathway in these neurons provides critical insight into their vulnerability to pathophysiological stimuli and the development of therapeutic and preventive interventions for their preservation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。