The transition from acute to chronic pain: dynamic epigenetic reprogramming of the mouse prefrontal cortex up to 1 year after nerve injury

从急性疼痛到慢性疼痛的转变:神经损伤后一年内小鼠前额叶皮质的动态表观遗传重编程

阅读:5
作者:Lucas Topham, Stephanie Gregoire, HyungMo Kang, Mali Salmon-Divon, Elad Lax, Magali Millecamps, Moshe Szyf, Laura S Stone

Abstract

Chronic pain is associated with persistent structural and functional changes throughout the neuroaxis, including in the prefrontal cortex (PFC). The PFC is important in the integration of sensory, cognitive, and emotional information and in conditioned pain modulation. We previously reported widespread epigenetic reprogramming in the PFC many months after nerve injury in rodents. Epigenetic modifications, including DNA methylation, can drive changes in gene expression without modifying DNA sequences. To date, little is known about epigenetic dysregulation at the onset of acute pain or how it progresses as pain transitions from acute to chronic. We hypothesize that acute pain after injury results in rapid and persistent epigenetic remodelling in the PFC that evolves as pain becomes chronic. We further propose that understanding epigenetic remodelling will provide insights into the mechanisms driving pain-related changes in the brain. Epigenome-wide analysis was performed in the mouse PFC 1 day, 2 weeks, 6 months, and 1 year after peripheral injury using the spared nerve injury in mice. Spared nerve injury resulted in rapid and persistent changes in DNA methylation, with robust differential methylation observed between spared nerve injury and sham-operated control mice at all time points. Hundreds of differentially methylated genes were identified, including many with known function in pain. Pathway analysis revealed enrichment in genes related to stimulus response at early time points, immune function at later time points, and actin and cytoskeletal regulation throughout the time course. These results emphasize the importance of considering pain chronicity in both pain research and in treatment optimization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。