Tangeretin maintains antioxidant activity by reducing CUL3 mediated NRF2 ubiquitination

橘皮素通过降低 CUL3 介导的 NRF2 泛素化来维持抗氧化活性

阅读:5
作者:Yue Wang, Rong Jin, Jiebiao Chen, Jinping Cao, Jianbo Xiao, Xian Li, Chongde Sun

Abstract

To explore the antioxidant capacity of citrus flavonoids under different evaluation systems, chemical and biological methods were engaged to determine the antioxidant abilities of flavanones and polymethoxyflavones. Results showed that flavanones exhibited good antioxidant activity, while polymethoxyflavones had a weak ability to scavenge free radicals. Both flavanones and polymethoxyflavones exerted the ability to inhibit H2O2-induced oxidative stress, but the effective concentration of polymethoxyflavones was lower. Further exploration showed that neohesperidin and tangeretin selectively regulated antioxidant enzyme activity, both in vitro and in vivo. Tangeretin also maintained the expression of antioxidant enzymes in L02 cells and in ICR mice liver. The mechanism exploration showed that both neohesperidin and tangeretin promoted the expression of NRF2 and inhibit the expression of KEAP1, but tangeretin could inhibit the ubiquitination of NRF2 by inhibiting CUL3. The mechanism was verified by CUL3 gene silencing. This study demonstrates a novel antioxidant mechanism of natural products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。