Arachidonic acid and docosahexaenoic acid suppress osteoclast formation and activity in human CD14+ monocytes, in vitro

花生四烯酸和二十二碳六烯酸体外抑制人类 CD14+ 单核细胞破骨细胞的形成和活性

阅读:5
作者:Abe E Kasonga, Vishwa Deepak, Marlena C Kruger, Magdalena Coetzee

Abstract

An unbalanced diet can have adverse effects on health. Long chain polyunsaturated fatty acids (LCPUFAs) have been the focus of research owing to their necessity of inclusion in a healthy diet. However, the effects of LCPUFAs on human osteoclast formation and function have not been explored before. A human CD14+ monocyte differentiation model was used to elucidate the effects of an ω-3 LCPUFA, docosahexaenoic acid (DHA), and an ω-6 LCPUFA, arachidonic acid (AA), on osteoclast formation and activity. CD14+ monocytes were isolated from peripheral blood of healthy donors and stimulated with macrophage colony stimulating factor and receptor activator of nuclear factor kappa-B ligand to generate osteoclasts. Data from this study revealed that both the LCPUFAs decreased osteoclast formation potential of CD14+ monocytes in a dose-dependent manner when treated at an early stage of differentiation. Moreover, when exposed at a late stage of osteoclast differentiation AA and DHA impaired the bone resorptive potential of mature osteoclasts without affecting osteoclast numbers. AA and DHA abrogated vitronectin receptor expression in differentiating as well as mature osteoclasts. In contrast, the degree of inhibition for calcitonin receptor expression varied between the LCPUFAs with only AA causing inhibition during osteoclast differentiation. Furthermore, AA and DHA down regulated the expression of key osteoclast-specific genes in differentiating as well as mature osteoclasts. This study demonstrates for the first time that LCPUFAs can modulate osteoclast formation and function in a human primary osteoclast cell line.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。