Synthesis, Stability, and Kinetics of Hydrogen Sulfide Release of Dithiophosphates

二硫代磷酸酯的合成、稳定性及硫化氢释放动力学

阅读:6
作者:Eric M Brown, Nimesh P R Ranasinghe Arachchige, Arjun Paudel, Ned B Bowden

Abstract

The development of chemicals to slowly release hydrogen sulfide would aid the survival of plants under environmental stressors as well as increase harvest yields. We report a series of dialkyldithiophosphates and disulfidedithiophosphates that slowly degrade to release hydrogen sulfide in the presence of water. Kinetics of the degradation of these chemicals were obtained at 85 °C and room temperature, and it was shown that the identity of the alkyl or sulfide group had a large impact on the rate of hydrolysis, and the rate constant varied by more than 104×. For example, using tert-butanol as the nucleophile yielded a dithiophosphate (8) that hydrolyzed 13,750× faster than the dithiophosphate synthesized from n-butanol (1), indicating that the rate of hydrolysis is structure-dependent. The rates of hydrolysis at 85 °C varied from a low value of 6.9 × 10-4 h-1 to a high value of 14.1 h-1. Hydrogen sulfide release in water was also quantified using a hydrogen sulfide-sensitive electrode. Corn was grown on an industrial scale and dosed with dibutyldithiophosphate to show that these dithiophosphates have potential applications in agriculture. At a loading of 2 kg per acre, a 6.4% increase in the harvest yield of corn was observed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。