AAV5 delivery of CRISPR-Cas9 supports effective genome editing in mouse lung airway

AAV5递送CRISPR-Cas9可有效编辑小鼠肺部气道中的基因组。

阅读:2
作者:Shun-Qing Liang ,Christopher J Walkey ,Alexa E Martinez ,Qin Su ,Mary E Dickinson ,Dan Wang ,William R Lagor ,Jason D Heaney ,Guangping Gao ,Wen Xue

Abstract

Genome editing in the lung has the potential to provide long-term expression of therapeutic protein to treat lung genetic diseases. Yet efficient delivery of CRISPR to the lung remains a challenge. The NIH Somatic Cell Genome Editing (SCGE) Consortium is developing safe and effective methods for genome editing in disease tissues. Methods developed by consortium members are independently validated by the SCGE small animal testing center to establish rigor and reproducibility. We have developed and validated a dual adeno-associated virus (AAV) CRISPR platform that supports effective editing of a lox-stop-lox-Tomato reporter in mouse lung airway. After intratracheal injection of the AAV serotype 5 (AAV5)-packaged S. pyogenes Cas9 (SpCas9) and single guide RNAs (sgRNAs), we observed ∼19%-26% Tomato-positive cells in both large and small airways, including club and ciliated epithelial cell types. This highly effective AAV delivery platform will facilitate the study of therapeutic genome editing in the lung and other tissue types. Keywords: AAV5; CRISPR; Cas9; ciliated cells; club cells; lung editing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。