The antimalarial drug mefloquine enhances TP53 premature termination codon readthrough by aminoglycoside G418

抗疟药甲氟喹增强氨基糖苷类 G418 对 TP53 提前终止密码子的读取

阅读:6
作者:Michael W Ferguson, Chloe A N Gerak, Christalle C T Chow, Ettore J Rastelli, Kyle E Elmore, Florian Stahl, Sara Hosseini-Farahabadi, Alireza Baradaran-Heravi, Don M Coltart, Michel Roberge

Abstract

Nonsense mutations constitute ~10% of TP53 mutations in cancer. They introduce a premature termination codon that gives rise to truncated p53 protein with impaired function. The aminoglycoside G418 can induce TP53 premature termination codon readthrough and thus increase cellular levels of full-length protein. Small molecule phthalimide derivatives that can enhance the readthrough activity of G418 have also been described. To determine whether readthrough enhancers exist among drugs that are already approved for use in humans, we tested seven antimalarial drugs for readthrough of the common R213X TP53 nonsense mutation in HDQ-P1 breast cancer cells. Mefloquine induced no TP53 readthrough activity as a single agent but it strongly potentiated readthrough by G418. The two enantiomers composing pharmaceutical mefloquine potentiated readthrough to similar levels in HDQ-P1 cells and also in SW900, NCI-H1688 and HCC1937 cancer cells with different TP53 nonsense mutations. Exposure to G418 and mefloquine increased p53 phosphorylation at Ser15 and P21 transcript levels following DNA damage, indicating p53 produced via readthrough was functional. Mefloquine does not appear to enhance readthrough via lysosomotropic effects as it did not significantly affect lysosomal pH, the cellular levels of G418 or its distribution in organellar or cytosolic fractions. The availability of a readthrough enhancer that is already approved for use in humans should facilitate study of the therapeutic potential of TP53 readthrough in preclinical cancer models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。