Deletion of histone deacetylase 7 in osteoclasts decreases bone mass in mice by interactions with MITF

破骨细胞中组蛋白去乙酰化酶 7 的缺失通过与 MITF 的相互作用降低小鼠的骨量

阅读:5
作者:Melissa Stemig, Kristina Astelford, Ann Emery, Jangyeun J Cho, Ben Allen, Tsang-hai Huang, Rajaram Gopalakrishnan, Kim C Mansky, Eric D Jensen

Abstract

Molecular regulators of osteoclast formation and function are an important area of research due to the central role of osteoclasts in bone resorption. Transcription factors such as MITF are essential for osteoclast generation by regulating expression of the genes required for cellular differentiation and resorptive function. We recently reported that histone deacetylase 7 (HDAC7) binds to and represses the transcriptional activity of MITF in osteoclasts, and that loss of HDAC7 in vitro accelerated osteoclastogenesis. In the current study, we extend this initial observation by showing that conditional deletion of HDAC7 in osteoclasts of mice leads to an in vivo enhancement in osteoclast formation, associated with increased bone resorption and lower bone mass. Expression of multiple MITF target genes is increased in bone marrow derived osteoclast cultures from the HDAC7 knockout mice. Interestingly, multiple regions of the HDAC7 amino-terminus can bind to MITF or exert repressive activity. Moreover, mutation or deletion of the HDAC7 conserved deacetylase catalytic domain had little effect on repressive function. These observations identify HDAC7 in osteoclasts as an important molecular regulator of MITF activity and bone homeostasis, but also highlight a gap in our understanding of exactly how HDAC7 functions as a corepressor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。