NDRG2 Sensitizes Myeloid Leukemia to Arsenic Trioxide via GSK3β-NDRG2-PP2A Complex Formation

NDRG2 通过 GSK3β-NDRG2-PP2A 复合物形成增强髓系白血病对三氧化二砷的敏感性

阅读:6
作者:Soojong Park, Hyun-Tak Han, Sang-Seok Oh, Dong Hyeok Kim, Jin-Woo Jeong, Ki Won Lee, Minju Kim, Jong Seok Lim, Yong Yeon Cho, Cheol Hwangbo, Jiyun Yoo, Kwang Dong Kim

Abstract

N-Myc downstream-regulated gene 2 (NDRG2) was characterized as a tumor suppressor, inducing anti-metastatic and anti-proliferative effects in several tumor cells. However, NDRG2 functions on anticancer drug sensitivity, and its molecular mechanisms are yet to be fully investigated. In this study, we investigated the mechanism of NDRG2-induced sensitization to As2O3 in the U937 cell line, which is one of the most frequently used cells in the field of resistance to As2O3. NDRG2-overexpressing U937 cells (U937-NDRG2) showed a higher sensitivity to As2O3 than mock control U937 cell (U937-Mock). The higher sensitivity to As2O3 in U937-NDRG2 was associated with Mcl-1 degradation through glycogen synthase kinase 3β (GSK3β) activation. Inhibitory phosphorylation of GSK3β was significantly reduced in U937-NDRG2, and the reduction was diminished by okadaic acid, a protein phosphatase inhibitor. NDRG2 mediated the interaction between GSK3β and protein phosphatase 2A (PP2A), inducing dephosphorylation of GSK3β at S9 by PP2A. Although the C-terminal deletion mutant of NDRG2 (ΔC NDRG2), which could not interact with PP2A, interacted with GSK3β, the mutant failed to dephosphorylate GSK3β at S9 and increased sensitivity to As2O3. Our findings suggest that NDRG2 is a kind of adaptor protein mediating the interaction between GSK3β and PP2A, inducing GSK3β activation through dephosphorylation at S9 by PP2A, which increases sensitivity to As2O3 in U937 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。